We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




The Structure of the Nasal Cavity Channels Food Smells into the Nose and Avoids the Lungs

By LabMedica International staff writers
Posted on 30 Nov 2015
Print article
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).
Three-dimensional printing technology was used to create a model of the nasal cavity that enabled researchers to demonstrate why the smell of food goes into the nose rather than down into the lungs.

Investigators at Pennsylvania State University (University Park, USA) obtained computed tomography (CT) images of the orthonasal airway of a healthy human subject. A schematic diagram was prepared from the CT scan, which was used as the template to print an experimental model using a three-dimensional printer. The investigators then analyzed the flow field inside the airway.

They reported in the November 9, 2105, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that during inhalation, the anatomical structure of the oropharynx created an air curtain outside a virtual cavity connecting the oropharynx and the back of the mouth, which prevented food volatiles from being transported into the main stream toward the lung. In contrast, during exhalation, the flow preferentially swept through this virtual cavity and effectively enhanced the entrainment of food volatiles into the main retronasal flow. Thus, the shape of the airway preferentially transferred volatiles to the nasal cavity, which enabled the individual to maximize the smell of the food.

"During quiet breathing, there is no valve that can control the direction of volatile transport," said first author Dr. Rui Ni, assistant professor of mechanical engineering, at Pennsylvania State University. "However, something must be controlling the movement of these particles and keeping them out of the lungs. Smooth, relatively slow breathing maximizes delivery of the particles to the nose. Food smells and tastes better if you take your time."

Related Links:

Pennsylvania State University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.