We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

By LabMedica International staff writers
Posted on 14 Dec 2014
Print article
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).
An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them.

Investigators at the University of California, San Francisco (USA), St. Jude Children’s Research Hospital (Memphis, TN, USA), and other institutions treated a mouse model of malaria with the candidate drug compound (+)-SJ733. This drug was developed from a dihydroisoquinolone chemical series that had been identified in a phenotypic high-throughput screen. The compound is thought to inhibit the enzyme Plasmodium falciparum Ca2+-ATPase (ATP4), which is a cation-transporting ATPase responsible for maintaining low intracellular sodium ion levels in the parasite.

Results published in the December 1, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America revealed that in the mouse model, a single dose of (+)-SJ733 killed 80% of malaria parasites within 24 hours, and after 48 hours no parasites were detectable.

In vitro, the treatment of parasitized erythrocytes with (+)-SJ733 caused rapid disruption of sodium ion equilibrium in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence.

The immune systems of the treated animals responded to these changes in infected erythrocytes by removing them using the same mechanism the body relies on to rid itself of aging red blood cells. Parasites that evolved resistance to (+)-SJ733 were defective in other ways and failed to transmit the disease.

Contributing author Dr. Joseph DeRisi, professor of biochemistry and biophysics at the University of California, San Francisco, said, "The data suggest that compounds targeting ATP4 induce physical changes in the infected red blood cells that allow the immune system or erythrocyte quality control mechanisms to recognize and rapidly eliminate infected cells. This rapid clearance response depends on the presence of both the parasite and the investigational drug. That is important because it leaves uninfected red blood cells, also known as erythrocytes, unharmed."

Further development of (+)-SJ733 and the requisite clinical trials will be conducted by a consortium that includes investigators at St. Jude Children’s Research Hospital, the Swiss-based non-profit organization Medicines for Malaria Venture (Geneva, Switzerland), and the Japanese pharmaceutical company Eisai (Tokyo, Japan).

Related Links:

University of California, San Francisco
St. Jude Children’s Research Hospital
Medicines for Malaria Venture



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.