We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Researchers Resolve Molecular Structure of Critical Ubiquitin-Binding Enzyme

By LabMedica International staff writers
Posted on 03 Feb 2016
Print article
Image: Molecular model of E3 ubiquitin ligase (green), E2 ubiquitin enzyme (orange), \"activated ubiquitin\" (cyan), and \"allosteric ubiquitin\" (blue) (Photo courtesy of Dr. Bernhard Lechtenberg, Sanford Burnham Prebys Medical Discovery Institute).
Image: Molecular model of E3 ubiquitin ligase (green), E2 ubiquitin enzyme (orange), \"activated ubiquitin\" (cyan), and \"allosteric ubiquitin\" (blue) (Photo courtesy of Dr. Bernhard Lechtenberg, Sanford Burnham Prebys Medical Discovery Institute).
The molecular structure of a protein complex critically involved in diverse cellular functions such as cell signaling, DNA repair, and mounting anti-inflammatory and immune responses has been elucidated and presented in a recent paper.

Ubiquitination is a central process affecting all facets of cellular signaling and function. A critical step in ubiquitination is the transfer of the small regulatory protein ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases.

Linear ubiquitin chains are important regulators of cellular signaling pathways that control innate immunity and inflammation through nuclear factor (NF)-kappaB activation and protection against tumor necrosis factor-alpha-induced apoptosis. They are synthesized by HOIP (ring finger protein 31), which belongs to the RBR (RING-between-RING) family of E3 ligases and is the catalytic component of LUBAC (linear ubiquitin chain assembly complex), a multisubunit E3 ligase.

Investigators at the Sanford Burnham Prebys Medical Discovery Institute (La Jolla, CA, USA) presented—for what might be the first time—the structure of the fully active human HOIP RBR in its transfer complex with an E2-ubiquitin conjugate, which elucidated the intricate nature of the RBR E3 ligases.

They reported in the January 20, 2016, online edition of the journal Nature that the active HOIP RBR adopted a conformation markedly different from that of auto-inhibited RBRs. Furthermore, RBR bound the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer.

"We were surprised to find how the active form of the E3 ligase we analyzed, called HOIP, attaches ubiquitin in a markedly different way - an elongated fashion - compared to the other types of E3 ligases," said senior author Dr. Stefan Riedl, an associate professor in the NCI-designated Cancer Center at the Sanford Burnham Prebys Medical Discovery Institute. "This may be key to its role in activating the NF-kappaB pathway, a signaling process that is well established as a regulator of cell survival and death, and helps coordinate the immune system. NF-kappaB is the master regulator of inflammation inside cells, and its activation is believed to promote cancer development by inhibiting cell death and promoting inflammation. This study removes a significant technical barrier that has prevented exploiting RBR E3 ligases as a drug target for cancer and inflammatory disorders. Our next step is to continue to work very closely with our biology and immunology collaborators to more fully understand the regulation of RBR E3 ligases."

Related Links:

Sanford Burnham Prebys Medical Discovery Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.