We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Inhibition of Cholesterol Esterification Suppresses Growth of Pancreatic Cancer Cells

By LabMedica International staff writers
Posted on 18 May 2016
Print article
Image: Researchers have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis to other organs, pointing to a potential new treatment. Findings showed a higher number of metastatic lesions in organs of untreated and treated mice, shown at top and bottom, respectively (Photo courtesy of Dr. Junjie Li, Purdue University).
Image: Researchers have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis to other organs, pointing to a potential new treatment. Findings showed a higher number of metastatic lesions in organs of untreated and treated mice, shown at top and bottom, respectively (Photo courtesy of Dr. Junjie Li, Purdue University).
A team of cancer researchers has suggested that controlling cholesterol metabolism within tumor cells represents a novel approach towards treating the disease.

Investigators at Purdue University (West Lafayette, IN, USA) used stimulated Raman scattering (SRS) microscopy and Raman spectroscopy to examine pancreatic cancer cells. Raman spectroscopy exploits the inelastic scattering (so-called “Raman” scattering) phenomena to detect spectral signatures of important disease progression biomarkers, including lipids, proteins, and amino acids.

In a paper in the May 2, 2016, online edition of the journal Oncogene the investigators reported finding an aberrant accumulation of cholesteryl esters in human pancreatic cancer specimens and cell lines, mediated by the acyl-CoA cholesterol acyltransferase-1 (ACAT-1) enzyme.

ACAT catalyzes the intracellular esterification of cholesterol and formation of cholesteryl esters. The esterification of cholesterol mediated by ACAT is functionally significant for several reasons. ACAT-mediated esterification of cholesterol limits its solubility in the cell membrane lipids and thus promotes accumulation of cholesterol ester in the fat droplets within cytoplasm; this process is important because the toxic accumulation of free cholesterol in various cell membrane fractions is prevented.

The investigators found that expression of ACAT-1 showed a correlation with poor patient survival. Blocking cholesterol esterification, either by an ACAT-1 inhibitor, such as the drug avasimibe, or by shRNA knockdown, significantly suppressed tumor growth and metastasis in a mouse model of pancreatic cancer. At the molecular level, it was found that ACAT-1 inhibition increased intracellular free cholesterol level, which was associated with elevated endoplasmic reticulum stress and caused apoptosis.

"We show for the first time that if you control the cholesterol metabolism you could reduce pancreatic cancer spread to other organs," said senior author Dr. Ji-Xin Cheng, professor of chemistry and biomedical engineering at Purdue University. "We chose pancreatic cancer to test this approach because it is the most aggressive disease of all the cancers. By using avasimibe, a potent inhibitor of ACAT-1, we found that pancreatic cancer cells were much more sensitive to ACAT-1 inhibition than normal cells. The drug did not induce weight loss, and there was no apparent organ toxicity in the liver, kidney, lung, and spleen."

Related Links:
Purdue University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.