We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Multiple Myeloma Mouse Model Should Advance Drug Development Efforts

By LabMedica International staff writers
Posted on 18 May 2016
Print article
Image: A photomicrograph showing multiple myeloma cells in the bone marrow (Photo courtesy of the University of Miami School of Medicine).
Image: A photomicrograph showing multiple myeloma cells in the bone marrow (Photo courtesy of the University of Miami School of Medicine).
A recently developed multiple myeloma mouse model is expected to aid in understanding the pathology of the disease and serve as a platform for preclinical testing of potential therapeutic agents.

Investigators at the University of Miami School of Medicine (FL, USA) created the model by crossing two lines of genetically engineered mice. The first line (Mef−/−) lacked the gene for the transcription factor Mef (Elf4), which is known to both promote and suppress the formation of cancers. The second line (Rad50s) contained a mutation in a component of a sensor of DNA damage and regulator of DNA damage response pathways.

The investigators reported in the March 10, 2016, online edition of the journal Scientific Reports that about 70% of the hybrid Mef−/−Rad50s/s mice died from multiple myeloma or other plasma cell cancers.

These mice initially showed an abnormal plasma cell proliferation and monoclonal protein production, and then developed anemia and a decreased bone mineral density. Tumor cells could be serially transplanted. Genome mapping and whole exome sequencing revealed that the pathogenesis of plasma cell cancers in these mice was not linked to activation of a specific oncogene, or inactivation of a specific tumor suppressor (except Mef).

"Multiple myeloma is the second most common hematologic malignancy in the U.S. and it is a very complex disease," said senior author Dr. Stephen D. Nimer, professor of medicine, biochemistry, and molecular biology at the University of Miami School of Medicine. "So far, there have not been animal models of malignant plasma-cell diseases that allow us to study their stepwise progression and fully understand the complex cellular mechanisms. Now that we have a proper model of the disease, we will be able to more effectively study multiple myeloma as well as potential treatments."

"Although outcomes for multiple myeloma patients have greatly improved, it remains an incurable disease, despite the availability of newer treatments," said Dr. Nimer. "Several animal models of multiple myeloma have been reported, including models of human myeloma cells. However, these models imperfectly mimic the human disease. Developing more-reliable and accurate animal models that help us better understand myeloma and test new treatments will take us to the next level on the long and challenging road to a cure."

Related Links:
University of Miami School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.