We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Molecular Interactions Identified That Block Protein Transfer into Mitochondria of Huntington's Disease Neurons

By LabMedica International staff writers
Posted on 08 Jul 2014
Print article
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).
Researchers have identified a protein complex that interacts with the mutated form of huntingtin protein to impair transport of proteins into the mitochondria of brain cells, which leads to their malfunction and the loss of neurons that characterizes Huntington's disease.

Huntington’s disease is caused by a dominant gene that encodes a protein known as huntingtin (Htt). The 5' end of the Huntington's disease gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between 7 and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of Htt is broken down into toxic peptides, which contribute to the pathology of the syndrome.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) and their colleagues at the University of Pittsburgh (PA, USA) worked with in vitro culture models and with a mouse model that mimicked the early stages of Huntington's disease.

They reported in the May 18, 2014, online edition of the journal Nature Neuroscience that recombinant mutant Htt directly inhibited mitochondrial protein import in their culture model. Furthermore, mitochondria from the brain synaptosomes of presymptomatic Huntington's disease model mice and from mutant Htt-expressing primary neurons exhibited a protein import defect, suggesting that deficient protein import was an early event in Huntington's disease.

At the molecular level, the investigators spotted interactions between mutant Htt and the TIM23 (translocase of inner mitochondrial membrane 23) mitochondrial protein import complex. Overexpression of TIM23 complex subunits attenuated the mutant Htt–induced mitochondrial import defect and subsequent neuronal death, which demonstrated that deficient mitochondrial protein import caused mutant Htt-induced neuronal death.

“We showed the problem could be fixed by making cells overproduce the proteins that make this transfer possible,” said first author Dr. Hiroko Yano, assistant professor of neurological surgery, neurology, and genetics at the Washington University School of Medicine. “We do not know if this will work in humans, but it is exciting to have a solid new lead on how this condition kills brain cells.”

Related Links:

Washington University School of Medicine
University of Pittsburgh 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.