We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Elevated Levels of IgG2 Antibodies Protect Some Types of Gram-Negative Bacteria

By LabMedica International staff writers
Posted on 27 Aug 2014
Print article
Image: Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide composed of O-antigen, outer core and inner core joined by a covalent bond. They are found in the outer membrane of Gram-negative bacteria, and elicit strong immune responses in animals (Photo courtesy of Wikimedia Commons).
Image: Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide composed of O-antigen, outer core and inner core joined by a covalent bond. They are found in the outer membrane of Gram-negative bacteria, and elicit strong immune responses in animals (Photo courtesy of Wikimedia Commons).
The finding that an overabundance of a certain class of antibodies protects some bacteria from the effects of antibiotics has marked implications for our understanding of the protection generated by natural infections and for the design of vaccines, which should avoid inducing such inhibitory antibodies.

Investigators at the University of Birmingham (United Kingdom) worked with patients that had bronchiectasis—a chronic infection characterized by persistent cough, shortness of breath, and chest pain—or lung infection caused by the bacterium Pseudomonas aeruginosa.

They reported in the August 2014 online edition of the Journal of Experimental Medicine that in a significant portion of these patients, antibodies protected the bacterium from complement-mediated killing. Strains that resisted antibody-induced, complement-mediated killing produced a lipopolysaccharide containing O-antigen. In particular, they found that inhibition of antibody-mediated killing was caused by excess production of O-antigen–specific antibodies of the IgG2 class. Depletion of IgG2 to O-antigen restored the ability of sera to kill strains with long-chain O-antigen.

Patients with impaired serum-mediated killing of P. aeruginosa by IgG2 were shown to have poorer respiratory function than infected patients who did not produce the inhibitory antibody.

The authors suggested that excessive binding of IgG2 to O-antigen shielded the bacterium from other antibodies that could induce complement-mediated killing. Since there is significant sharing of O-antigen structure between different Gram-negative bacteria, this IgG2-mediated impairment of killing could be operating in other Gram-negative infections as well. These findings have marked implications for understanding the nature of protection generated by natural infections and for the design of vaccines, which should avoid inducing IgG2 class inhibitory antibodies.

Related Links:

University of Birmingham 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.