We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Gold Nanotubes Are Novel Agents for Cancer Diagnosis and Treatment

By LabMedica International staff writers
Posted on 03 Mar 2015
Print article
Image: Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by photoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes (Photo courtesy of Jing Claussen (iThera Medical, Germany)).
Image: Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by photoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes (Photo courtesy of Jing Claussen (iThera Medical, Germany)).
Cancer researchers have produced a highly defined class of gold nanotubes that are suitable for use in animals as in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles.

Investigators at the University of Leeds (United Kingdom) developed a method for length-controlled synthesis of gold nanotubes (NTs) with well-defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR (near infrared) surface plasmon resonance. A coating of poly(sodium 4-styrenesulfonate) (PSS) endowed the nanotubes with colloidal stability and low cytotoxicity.

Details published in the February 12, 2015, online edition of the journal Advanced Functional Materials revealed that the PSS-coated gold NTs had the following characteristics: 1) cellular uptake by colorectal cancer cells and macrophage cells, 2) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, 3) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, and 4) clearance from the body within 72 hours of injection.

A primary use for the gold nanotubes is in photoacoustic imaging, a hybrid biomedical imaging modality based on the aforementioned photoacoustic effect. In photoacoustic imaging, non-ionizing laser pulses are delivered into biological tissues. Some of the delivered energy is absorbed and converted into heat, leading to transient thermoelastic expansion with wideband ultrasonic emission. The generated ultrasonic waves are then detected by ultrasonic transducers to form images. The optical absorption in biological tissues can be due to endogenous molecules such as hemoglobin or melanin, or exogenously delivered contrast agents. Since blood usually has orders of magnitude larger absorption than surrounding tissues, there is sufficient endogenous contrast for photoacoustic imaging to visualize blood vessels. Recent studies have shown that photoacoustic imaging can be used in vivo for tumor angiogenesis monitoring, blood oxygenation mapping, functional brain imaging, and skin melanoma detection.

Senior author Dr. Steve Evans, professor of physics and at the University of Leeds, said, “Human tissue is transparent for certain frequencies of light – in the red/infrared region. This is why parts of your hand appear red when a torch is shone through it. When the gold nanotubes travel through the body, if light of the right frequency is shone on them they absorb the light. This light energy is converted to heat, rather like the warmth generated by the sun on skin. Using a pulsed laser beam, we were able to rapidly raise the temperature in the vicinity of the nanotubes so that it was high enough to destroy cancer cells. The nanotubes can be tumor-targeted and have a central "hollow" core that can be loaded with a therapeutic payload. This combination of targeting and localized release of a therapeutic agent could, in this age of personalized medicine, be used to identify and treat cancer with minimal toxicity to patients.”

Related Links:

University of Leeds


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.