We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Gene Therapy Treatment Extends Life of Mice Severely Affected by Muscular Dystrophy

By LabMedica International staff writers
Posted on 11 Oct 2015
Print article
Image: Molecular model of the dystrophin protein (Photo courtesy of Wikimedia Commons).
Image: Molecular model of the dystrophin protein (Photo courtesy of Wikimedia Commons).
An alternative gene therapy approach was used to successfully treat a mouse model of Duchenne muscular dystrophy (DMD).

DMD is caused by mutations in the gene that encodes the protein dystrophin and the subsequent disruption of the dystrophin-associated protein complex (DAPC). The disease effects about one of every 3,500 boys whose muscle function is so degraded that they die usually before they reach the age of 30.

To develop methods for treating this syndrome, investigators at Ohio State University (Columbus, USA) chose to work with mice deficient for dystrophin and utrophin, (mdx/utrn−/−) that die between six and 20 weeks of age because of severe muscle weakness, pronounced growth retardation, and kyphosis rather than the more frequently used dmx model whose animals are clinically normal despite lacking dystrophin.

Dystrophin deficiency has been definitively established as one of the root causes of the general class of myopathies collectively referred to as muscular dystrophy. In normal muscle cells, utrophin is located at the neuromuscular synapse and myotendinous junctions. It is necessary for normal membrane maintenance, and for the clustering of the acetylcholine receptor.

The investigators evaluated an alternative to dystrophin replacement by overexpressing the ITGA7 (integrin, alpha 7) gene using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin–glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and its overexpression does not elicit an immune response.

In the current study, five to seven day-old mice deficient for dystrophin and utrophin, (mdx/utrn−/−)were treated with the ITGA7 gene delivered via the AAV carrier. Results published in the August 11, 2015, online edition of the journal Human Gene Therapy revealed that by eight weeks following ITGA7 injection, there was widespread expression of the gene at the sarcolemma of multiple muscles. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn−/− mouse, including kyphosis. Overexpression of alpha7 expression protected against loss of force following contraction-induced damage, and increased specific force in the diaphragm and EDL (extensor digitorum longus) muscles eight weeks after gene transfer.

Mice of the mdx/utrn−/− line usually die between six to 20 weeks of age, but gene transfer of alpha7 extended longevity by more than 10 weeks.

Related Links:

Ohio State University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.