We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

By LabMedica International staff writers
Posted on 24 Nov 2014
Print article
A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage.

Offering the potential to test engineered tissues before human transplantation increases the success rate of implantation, and accelerates the translation of tissue engineering methods from the lab to the clinic, the novel e-incubator was described in the journal Tissue Engineering, Part C.

Shadi Othman, PhD, Karin Wartella, PhD, Vahid Khalilzad Sharghi, and Huihui Xu, PhD, from the University of Nebraska-Lincoln (USA), presented their findings of a validation study using the device to culture tissue-engineered bone constructs for four weeks. The e-incubator is a standalone unit that automatically detects and regulates internal conditions such as temperature, carbon dioxide levels, and pH via a microcontroller. It performs media exchange to feed the cultures and remove waste products. The current design is compatible with MRI to monitor the constructs without removing them from the incubator. With proper adjustments, compatibility with other imaging technologies including computed tomography [CT] and optical imaging is also possible.”

“Calibratable, hands-free tissue development environments are becoming increasingly important for the engineering of implantable tissues,” said Tissue Engineering co-editor-in-chief Peter C. Johnson, MD, vice president, research and development, Avery Dennison Medical Solutions (Chicago, IL, USA), and president and CEO, Scintellix, LLC (Raleigh, NC, USA). “In this new development, noninvasive imaging modalities are added to the spectrum of sensing and environmental capabilities that heretofore have included temperature, humidity, light, physical force, and electromagnetism. This represents a solid advance for the field.”

Related Links:

University of Nebraska-Lincoln


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.