Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Diagnoses Wrist Fractures As Well As Radiologists

By MedImaging International staff writers
Posted on 04 Mar 2024

In the field of medical imaging, conventional radiography is the primary method for diagnosing wrist fractures. However, challenges such as suboptimal positioning, technique, patient cooperation, and interpretational errors, often stemming from clinician inexperience, fatigue, or poor viewing conditions, can impact the accuracy of these radiographs. The most frequent interpretational mistakes in emergency departments (EDs) are missed fractures, leading to treatment delays. Physicians, particularly those with limited training in musculoskeletal imaging, often struggle to identify wrist fractures, especially when the signs are subtle. The advancement of deep learning (DL) in automating wrist fracture diagnosis could significantly assist physicians, and recent developments have seen substantial improvements in DL models' image classification error rates. Now, a new meta-analysis reveals that artificial intelligence (AI) algorithms, especially convolutional neural networks (CNNs), are highly effective in detecting wrist fractures from plain X-rays, performing on par with trained healthcare professionals.

The study by researchers at the University Hospital of Southern Denmark (Odense, Denmark) involved analyzing various medical databases from January 2012 to March 2023. The team identified six studies that applied deep-learning AI for diagnosing radial and ulnar fractures using radiographs. The studies collectively included 33,026 X-ray images. Each study employed CNN models trained on a dataset of images and compared their diagnostic accuracy against healthcare experts specializing in fracture diagnostics. The focus on wrist fractures in this meta-analysis was due to their high rate of misdiagnosis in EDs, where their detection on X-rays can be complex.

A comprehensive review of these studies indicated that CNNs, when benchmarked against the consensus of healthcare experts, achieved a sensitivity rate of 92% and a specificity rate of 93%. This finding positions CNN as an effective preliminary tool for reviewing radiographs, potentially reducing missed fractures when followed up by a healthcare professional's examination. However, the study acknowledges the need for further research, emphasizing the importance of external dataset testing, uniform methodologies, and independent expert reference standards to fully ascertain the effectiveness of diagnostic AI algorithms. Future studies should also focus on patient outcomes as a reference point to understand the real-world impact of CNNs in clinical settings.

“For clinicians, AI could potentially be used to enhance diagnostic confidence, especially in fields of radiology. AI algorithms may be particularly useful for less experienced clinicians,” concluded the researchers.

Related Links:
University Hospital of Southern Denmark 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound System
P20 Elite
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
New
Ultrasound System
Voluson Signature 18
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.