We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Advanced Gene Therapy Cures Cystic Fibrosis in Culture and Mouse Models

By LabMedica International staff writers
Posted on 01 Dec 2015
Print article
Image: Structure of the protein encoded by the CFTR gene (Photo courtesy of Wikimedia Commons).
Image: Structure of the protein encoded by the CFTR gene (Photo courtesy of Wikimedia Commons).
Improvements in gene therapy technology enabled restoration of ion channel function in cultures of cells from cystic fibrosis (CF) patients and in a CF mouse model.

In cystic fibrosis, mutations of the CFTR (cystic fibrosis transmembrane conductance regulator) gene affecting chloride ion channel function lead to dysregulation of epithelial fluid transport in the lung, pancreas, and other organs. Complications include thickened mucus in the lungs with frequent respiratory infections, and pancreatic insufficiency giving rise to malnutrition and diabetes. These conditions lead to chronic disability and reduced life expectancy.

Gene therapy holds promise for a curative treatment applicable to all CF patients. The various viral vector-based clinical trials conducted in the past have demonstrated safety and tolerance of different vectors, but none have led to a clear and persistent clinical benefit. In the current study, investigators at KU Leuven (Belgium) described how recent clinical breakthroughs in adeno-associated virus-(rAAV) based gene therapy encouraged them to re-explore a rAAV approach for CF.

Adeno-associated virus (AAV) is a small, benign virus found in humans and some other primate species. The virus causes a very mild immune response, lending further support to its apparent lack of pathogenicity. Gene therapy vectors using modified AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell. These features make AAV a very attractive candidate for creating viral vectors for gene therapy.

The investigators evaluated the preclinical potential of rAAV gene therapy for CF to restore chloride and fluid secretion in two complementary models: intestinal organoids derived from CF subjects and a CF mouse model, an important milestone towards the development of a clinical rAAV candidate for CF gene therapy. Towards this end, they engineered a rAAV vector containing the gene for a truncated form of CFTR combined with a short promoter (CMV173) to ensure optimal gene expression.

Results of treatment of mice and cell cultures with the CFTR-rAAV vector were published in the October 28, 2015, online edition of the American Journal of Respiratory and Critical Care Medicine. They provided evidence that rAAV-mediated gene transfer of a truncated CFTR functionally rescued the CF phenotype across the nasal mucosa of CF mice and in patient-derived organoids.

"We administered the rAAV to the mice via their airways. Most of the CF mice recovered. In the patient-derived cell cultures, chloride and fluid transport were restored," said senior author Dr. Zeger Debyser, professor of molecular medicine at KU Leuven. "We must not give CF patients false hope. Developing a treatment based on gene therapy will take years of work. For one thing, our study did not involve actual human beings, only mice and patient-derived cell cultures. Furthermore, we still have to examine how long the therapy works. Repeated doses might be necessary. But gene therapy clearly is a promising candidate for further research towards a cure for cystic fibrosis."

Related Links:

KU Leuven


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.