We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Molecular Manipulation Induces Skin Cells to Produce Hair

By LabMedica International staff writers
Posted on 22 Aug 2017
Print article
Image: Two types of progenitor cells from dissociated skin – epidermal (green) and dermal (red) – undergo a series of morphological transitions to form reconstituted skin (Photo courtesy of Mingxing Lei / Cheng-Ming Chuong Lab).
Image: Two types of progenitor cells from dissociated skin – epidermal (green) and dermal (red) – undergo a series of morphological transitions to form reconstituted skin (Photo courtesy of Mingxing Lei / Cheng-Ming Chuong Lab).
Working with mouse skin cells, researchers have generated hair-producing follicles from newborn and adult cells and traced the molecular pathways that control their development.

Investigators at the University of Southern California (Los Angeles, USA) were particularly interested in determining whether adult skin cells could be transformed into hair-producing follicles. Towards this end, they began with an in depth imaging analysis of skin cells from newborn mice during the process of forming three-dimensional, hair-producing organoids.

Observations described in the August 10, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that skin cells from newborn mice formed organoids by transitioning through six distinct phases: 1) dissociated cells; 2) aggregated cells; 3) cysts; 4) coalesced cysts; 5) layered skin; and 6) skin with follicles, which robustly produced hair after being transplanted onto the back of a host mouse. These physical manifestations were driven at the molecular level by the sequential expression of adhesion molecules, growth factors, Wnt signaling proteins, and matrix metalloproteinases (MMPs).

In contrast, skin cells from adult mice formed small aggregates, but then development stalled when grown in vitro cultures. Findings from the newborn cells study enabled the investigators to develop a strategy to restore morphological transitions and rescue the hair-forming ability of adult organoids: (i) continuous PKC (Protein kinase C) inhibition and (ii) timely supply of the growth factors IGF (Insulin-like growth factor) and VEGF (Vascular endothelial growth factor), Wnts, and MMPs.

By providing the correct molecular and genetic cues in the proper sequence, the investigators were able to stimulate adult organoids to continue their development and eventually produce hair. Ultimately, adult organoids produced about 40% as much hair as the newborn organoids.

"Normally, many aging individuals do not grow hair well, because adult cells gradually lose their regenerative ability," said senior author Dr. Cheng-Ming Chuong, professor of pathology at the University of Southern California. "With our new findings, we are able to make adult mouse cells produce hair again. In the future, this work can inspire a strategy for stimulating hair growth in patients with conditions ranging from alopecia to baldness."

Related Links:
University of Southern California

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.