We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Gold Nanoshells Safely Deliver Toxic Chemotherapeutic Drugs

By LabMedica International staff writers
Posted on 21 Nov 2017
Print article
Image: Investigators loaded light-activated nanoshells (gold and light blue) with the anticancer drug lapatinib (yellow) by encasing the drug in an envelope of albumin (blue). Light from a near-infrared laser (center) was used to remotely trigger the release of the drug (right) after the nanoshells were taken up by cancer cells (Photo courtesy of A. Goodman, Rice University).
Image: Investigators loaded light-activated nanoshells (gold and light blue) with the anticancer drug lapatinib (yellow) by encasing the drug in an envelope of albumin (blue). Light from a near-infrared laser (center) was used to remotely trigger the release of the drug (right) after the nanoshells were taken up by cancer cells (Photo courtesy of A. Goodman, Rice University).
A novel method for delivering toxic drugs to tumor cells relies on the use of light-activated gold nanoparticles, which are triggered remotely by laser light to release the drugs inside the cancer cells.

Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery and are an emerging field of interest in cancer treatment. In this regard, investigators at Rice University (Houston, TX, USA) and Northwestern University (Evanston, IL, USA) demonstrated the near-IR (infrared) light-triggered release of the chemotherapeutic drugs docetaxel - from a nanoshell-based DNA host complex - and lapatinib - from nanoshell-based DNA and human serum albumin host complexes.

The investigators reported in the November 6, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release could be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells.

Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex caused increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods represented localized drug-release strategies that could facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.

"In future studies, we plan to use a Trojan-horse strategy to get the drug-laden nanoshells inside tumors," said senior author Dr. Naomi Halas, professor of biomedical engineering at Rice University. "Macrophages, a type of white blood cell that's been shown to penetrate tumors, will carry the drug-particle complexes into tumors, and once there we use a laser to release the drugs."

"Getting chemotherapeutic drugs to penetrate tumors is very challenging," said contributing author Dr. Susan Clare, research associate professor of surgery at Northwestern University. "Drugs tend to get pushed out of tumors rather than drawn in. To get an effective dose at the tumor, patients often have to take so much of the drug that nausea and other side effects become severe. Our hope is that the combination of macrophages and triggered drug-release will boost the effective dose of drugs within tumors so that patients can take less rather than more."

Related Links:
Rice University
Northwestern University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.