We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Macrophage Nanoparticles Created as Sepsis Treatment

By LabMedica International staff writers
Posted on 16 Jan 2018
Print article
Image: An artist illustration of nanoparticles coated with macrophage cell membranes (Photo courtesy of Nanomaterials & Nanomedicine Laboratory, University of California, San Diego).
Image: An artist illustration of nanoparticles coated with macrophage cell membranes (Photo courtesy of Nanomaterials & Nanomedicine Laboratory, University of California, San Diego).
A novel approach for treating sepsis is based on nanoparticles (so-called nanosponges) coated with cell membranes isolated from immune macrophages.

Sepsis is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Sepsis is caused by an immune response triggered by an infection. Most commonly, the infection is bacterial, but it may also be from fungi, viruses, or parasites. Common locations for the primary infection include lungs, brain, urinary tract, skin, and abdominal organs.

Currently, there are no effective clinically available sepsis treatments, and care remains primarily supportive. In an effort to develop an effective sepsis treatment, investigators at the University of California, San Diego (USA) fabricated a novel type of macrophage biomimetic nanoparticle or nanosponge. The nanoparticles, made by wrapping polymeric cores with cell membrane derived from macrophages, possessed an antigenic exterior the same as the source cells.

The investigators reported in the October 24, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that by acting as macrophage decoys, these nanoparticles bound and neutralized endotoxins that would otherwise have triggered immune activation. In addition, these macrophage-like nanoparticles sequestered proinflammatory cytokines and inhibited their ability to potentiate the sepsis cascade.

In a mouse Escherichia coli bacteremia model, treatment with macrophage mimicking nanoparticles, termed M-Phi-NPs, reduced proinflammatory cytokine levels, inhibited bacterial dissemination, and ultimately conferred a significant survival advantage to infected mice.

"A wide range of endotoxins and pro-inflammatory cytokines naturally bind to macrophage cell membranes, so these nanosponges serve as universal traps for a broad spectrum of sepsis-causing molecules," said senior author Dr. Liangfang Zhang, professor of nanoengineering at the University of California, San Diego. "They can work across different bacterial genus, species and strains, and since they are covered in actual macrophage cell membranes, they can pass as the body's own immune cells and circulate the bloodstream without being evicted."

Related Links:
University of California, San Diego

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.