We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




CRISPR/Cas9 Corrects Symptoms of Fragile X Syndrome in Model

By LabMedica International staff writers
Posted on 06 Jul 2018
Print article
Image: This artist\'s concept shows two nanoparticles coming into the brain (at top) while a pair of scissors cuts at bottom right. Use of gene editing to cut DNA at a precise location reduced autism symptoms in mice with fragile X syndrome (Photo courtesy of the University of California, Berkeley).
Image: This artist\'s concept shows two nanoparticles coming into the brain (at top) while a pair of scissors cuts at bottom right. Use of gene editing to cut DNA at a precise location reduced autism symptoms in mice with fragile X syndrome (Photo courtesy of the University of California, Berkeley).
In order to correct fragile X syndrome in a mouse model, a team of neurological disease researchers used gold nanoparticles rather than viruses to deliver the CRISP\Cas9 gene-editing tool to cells in striatum, a brain region associated with formation of habits.

Fragile X syndrome (FXS) is a genetic disorder. Symptoms often include mild to moderate intellectual disability, physical deformities, and about a third of those affected have features of autism such as problems with social interactions and delayed speech. Hyperactivity is common and seizures occur in about 10% of patients.

Investigators at the University of Texas Health Science Center at San Antonio (USA) worked with multiple mouse models to establish a safe method for introducing the CRISPR/Cas9 gene-editing tool into the brains of adult mice.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

The investigators reported in the June 25, 2018, online edition of the journal Nature Biomedical Engineering that intracranial injection of CRISPR–Gold nanoparticles, a nonviral delivery vehicle for the CRISPR–Cas9 ribonucleoprotein, could edit genes in the brains of adult mice in multiple mouse models. CRISPR–Gold could deliver both Cas9 and Cpf1 ribonucleoproteins and could edit all of the major cell types in the brain, including neurons, astrocytes, and microglia, with undetectable levels of toxicity at the doses used.

The investigators also showed that CRISPR–Gold designed to target the metabotropic glutamate receptor 5 (mGluR5) gene, which encodes an excitatory protein that increases communications between neurons, could efficiently reduce local mGluR5 levels in the striatum after an intracranial injection. This effect rescued mice from the exaggerated repetitive behaviors caused by fragile X syndrome, a common single-gene form of autism spectrum disorders. After treatment the rodents' digging behavior slowed by 30% and leaping behavior was reduced by 70%.

"The enzyme we used, Cas9, is like a pair of scissors," said senior author Dr. Hye Young Lee, assistant professor of cellular and integrative physiology at University of Texas Health Center at San Antonio. "We were able to cut the genetic blueprint, DNA, at a location that causes the exaggerated repetitive behaviors. The approach can also be used to treat other diseases if we know the gene target. This includes many neurological diseases such as epilepsy, and the brain cancer glioblastoma."

Related Links:
University of Texas Health Science Center at San Antonio

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.