We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genome Editing Used to Correct Mitochondrial Mutations

By LabMedica International staff writers
Posted on 08 Oct 2018
Print article
Image: Very high magnification micrograph showing ragged red fibers (also ragged red fibers), commonly abbreviated RRF, in a mitochondrial myopathy (Photo courtesy of Wikimedia Commons).
Image: Very high magnification micrograph showing ragged red fibers (also ragged red fibers), commonly abbreviated RRF, in a mitochondrial myopathy (Photo courtesy of Wikimedia Commons).
A recently developed mouse model, which mimics a cardiac mitochondrial disease, was used to demonstrate the potential use of genomic engineering to treat the disorder by eliminating the mutation that causes it.

Mitochondrial diseases are, as the name implies, a group of disorders caused by dysfunctional mitochondria. About 15% of the time these diseases are caused by mutations in the mitochondrial DNA (mtDNA) that affect mitochondrial function. Mitochondrial diseases take on unique characteristics both because of the way the diseases are often inherited and because mitochondria are so critical to cell function. The subclass of these diseases that have neuromuscular disease symptoms are often called a mitochondrial myopathy.

To address the lack of effective treatment for these disorders, investigators at the University of Cambridge (United Kingdom) exploited a recently developed mouse model (the m.5024C>T tRNAAla mouse) that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue.

To modify the mitochondrial genome, the investigators chose a programmable nuclease therapy approach, using mitochondrially targeted zinc-finger nucleases (mtZFN), rather than the more frequently used CRISPR/Cas9 method. The mtZFN gene-editing tool was delivered to the mice via an adeno-associated virus vector. The tool was designed to recognize and then eliminate mutant mitochondrial DNA, based on sequence differences between healthy and mutant mitochondrial DNA.

The investigators reported in the September 24, 2018, online edition of the journal Nature Medicine that by systemically administering mitochondrially targeted mtZFN using adeno-associated virus to the mice, they successfully induced specific elimination of mutant mtDNA across the heart. The biochemical and physiological behavior of the diseased hearts returned to near normal values.

"One idea for treating these devastating diseases is to reduce the amount of mutated mitochondrial DNA by selectively destroying the mutated DNA, and allowing healthy DNA to take its place," said senior author Dr. Michal Minczuk, program leader at the mitochondrial biology unit of the University of Cambridge.

Related Links:
University of Cambridge

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.