We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Bee Venom Nanoparticles Reduce Tumors in Animal Experiments

By LabMedica International staff writers
Posted on 25 Aug 2009
Print article
Melittin, the toxic component of bee venom, has been incorporated into nanoparticles such that when injected into mice triggered death of cancer cells and remission of tumors of both breast cancers and melanomas as well as destruction of precancerous skin lesions. Melittin, a peptide consisting of 26 amino acids, is the principal active component of bee venom (apitoxin) and is a potent antimicrobial compound and a powerful stimulator of phospholipase A2.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) affectionately nicknamed the nanoparticles prepared from perfluorocarbon and melittin "nanobees.” These particles could be further modified to incorporate specific targeting molecules such as antibodies or receptors. The nanobee format has two major features. It sequesters the melittin and protects the body from its toxic effects. At the same time, the nanoparticles are resistant to the action of proteolytic enzymes in the blood that would otherwise quickly destroy the melittin.

To test the efficacy of the nanobees the investigators worked with mouse models for both human breast cancer and melanoma. Results published in the August 10, 2009, online edition of the Journal of Clinical Investigation revealed that four to five injections of generic nanobees over several days, slowed growth of breast cancer tumors by nearly 25%, while the size of melanoma tumors decreased by 88% compared to untreated tumors. Molecularly targeted nanobees selectively delivered melittin to multiple tumor targets, including endothelial and cancer cells. The transfer process did not disrupt the surface membrane of cells but did trigger apoptosis and in animals caused regression of precancerous dysplastic lesions.

"Melittin has been of interest to researchers because in high enough concentration it can destroy any cell it comes into contact with, making it an effective antibacterial and antifungal agent and potentially an anticancer agent," said senior author Dr. Paul Schlesinger, associate professor of cell biology and physiology at Washington University School of Medicine. "Cancer cells can adapt and develop resistance to many anticancer agents that alter gene function or target a cell's DNA, but it is hard for cells to find a way around the mechanism that melittin uses to kill."

"Nanobees are an effective way to package the useful, but potentially deadly, melittin, sequestering it so that it neither harms normal cells nor gets degraded before it reaches its target," said Dr. Schlesinger. "Potentially, these could be formulated for a particular patient. We are learning more and more about tumor biology, and that knowledge could soon allow us to create nanoparticles targeted for specific tumors using the nanobee approach."

Related Links:
Washington University School of Medicine



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.