We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




High-Throughput siRNA Screening Identifies Drug Targets in MYC-driven Cancers

By LabMedica International staff writers
Posted on 04 Jun 2012
Print article
A sophisticated high-throughput screening technique was used to search for genes able to block the activity of an oncogene that produces a protein that had traditionally been considered “undruggable” due to its lack of binding sites for low molecular weight inhibitors.

Investigators at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) focused their attention on the gene MYC, which is a strong protooncogene that it is very often found to be upregulated in many types of cancers. The Myc protein encoded by this gene is a transcription factor that activates expression of a great number of genes through binding on consensus sequences (Enhancer Box sequences (E-boxes)) and recruiting histone acetyltransferases (HATs). It can also act as a transcriptional repressor. By binding Miz-1 transcription factor and displacing the p300 coactivator, it inhibits expression of Miz-1 target genes. Myc is activated upon various mitogenic signals such as Wnt, Shh, and EGF (via the MAPK/ERK pathway). By modifying the expression of its target genes, MYC activation results in numerous biological effects. The protein encoded by MYC has been found to be highly resistant to chemotherapy mainly because it lacks efficient binding sites for drug compounds.

A paper published in the May 23, 2012, online edition of the journal Proceedings of the National Academy of Sciences of the USA described the use of high-throughput siRNA (small interfering RNA) screening to evaluate a library of 3.300 druggable genes for their possible effect on MYC. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting, and approximately one-third selectively induced accumulation of cellular DNA damage. In addition, genes involved in histone acetylation and transcriptional elongation were identified, indicating that the screen had revealed known MYC-associated pathways.

For in vivo validation in a nude mouse xenograft model, the investigators selected the enzyme CSNK1e, a kinase whose expression correlated with MYC amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, they confirmed that inhibition of CSNK1e halted growth of MYC-amplified neuroblastoma xenografts.

An inhibitor for CSNK1e already exists: a compound that originally was developed to modulate sleep cycles. “It had been sitting on a shelf for years, like the thousands of other “orphan” drugs that are abandoned when they prove ineffective for their intended use,” said senior author Dr. Carla Grandori, professor of human biology at the Fred Hutchinson Cancer Research Center. “Fortunately, MYC-driven cancer cells have an Achilles heel. Their rapid growth and division damages their DNA, and they rely on other genes to repair that damage. Disabling those genes can cripple the cancer’s ability to grow.”

“It is possible that the next great breakthrough in cancer therapy is already out there, sitting on a shelf, hiding in plain view,” said Dr. Grandori. “We have barely scratched the surface. These techniques are incredibly powerful, but they are new and not widely known. There are thousands of researchers who could apply this approach to their work. In the right hands, it could speed up the development of new cancer therapies a thousand-fold.”

Related Links:

Fred Hutchinson Cancer Research Center



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.