We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

By LabMedica International staff writers
Posted on 24 Feb 2015
Print article
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).
Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.

Saposin C is a multifunctional protein known to activate lysosomal enzymes and induce membrane fusion in an acidic environment. Excessive accumulation of lipid-coupled saposin C in lysosomes is cytotoxic. Because tumors generate an acidic microenvironment, caused by leakage of lysosomal enzymes and hypoxia, it was hypothesized that saposin C may be an effective anticancer agent.

SapC–DOPS nanovesicles had been shown previously to target phosphatidylserine, an anionic phospholipid preferentially exposed in the surface of cancer cells and tumor-associated vasculature. Since binding of SapC to phosphatidylserine is favored at acidic pHs, and the latter characterizes the milieu of many solid tumors, investigators at the University of Cincinnati (OH, USA) and their colleagues at Nanjing Medical University (China) tested the effect of pH on the binding capacity of SapC–DOPS to lung tumor cells and the influence of the nanovesicles on the viability of the cells.

Results published in the February 2015 online edition of the journal Molecular Cancer Therapeutics revealed that, as expected, SapC–DOPS binding to cancer cells was more pronounced under acidic conditions. Viability assays on a panel of human lung tumor cell cultures showed that SapC–DOPS cytotoxicity was positively correlated with cell surface phosphatidylserine levels, whereas mitochondrial membrane potential measurements were consistent with apoptosis-related cell death.

Using a fluorescence tracking method in live mice, the investigators showed that SapC–DOPS specifically targeted human lung cancer xenografts, and that systemic therapy with SapC–DOPS induced tumor apoptosis and significantly inhibited tumor growth without negatively affecting normal tissues.

Senior author Dr. Xiaoyang Qi, professor of hematology-oncology at the University of Cincinnati, said, "Using a double-tracking method in live models, we showed that the nanovesicles were specifically targeted to the tumors. These data suggest that the acidic phospholipid phosphatidylserine is a biomarker for lung cancer, as it has been found to be for pancreatic and brain tumors in previous studies, and can be effectively targeted for therapy using cancer-selective SapC-DOPS nanovesicles. We observed that the nanovesicles selectively killed human lung cancer cells, and the noncancerous, or untransformed cells, remained unaffected. This toxic effect correlated to the surface exposure level of phosphatidylserine on the tumor cells. Our results show that SapC-DOPS could be a promising treatment option for lung cancer worthy of further clinical study."

Related Links:

University of Cincinnati
Nanjing Medical University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.