We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Molecular Pathway Controlling High-affinity Antibody Production Identified

By LabMedica International staff writers
Posted on 19 May 2016
Print article
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).
A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible costimulator ICOS via the kinase TBK1 (TANK-binding kinase 1).

Follicular B helper T-cells (also known as just follicular helper T-cells or TFH), are antigen-experienced CD4+ T-cells found in the periphery within B-cell follicles of secondary lymphoid organs such as lymph nodes, spleens, and Peyer's patches, and are identified by their constitutive expression of the B-cell follicle homing receptor CXCR5. Upon cellular interaction and cross-signaling with their cognate follicular B- cells, TFH cells trigger the formation and maintenance of germinal centers through the expression of CD40 ligand (CD40L) and the secretion of IL-21 and IL-4. TFH cells also migrate into these seeded germinal centers, predominantly composed of rapidly dividing and mutating B-cells.

Within germinal centers, TFH cells play a critical role in mediating the selection and survival of B-cells that go on to differentiate either into special plasma cells capable of producing high affinity antibodies against foreign antigen, and memory B-cells capable of quick immune re-activation in the future if ever the same antigen is re-encountered. TFH cells are also thought to facilitate negative selection of potentially autoimmune-causing mutated B-cells in the germinal center. Until now the biomechanisms by which TFH cells mediated germinal center tolerance were not fully understood.

Investigators at the La Jolla Institute for Allergy and Immunology (CA, USA) have unraveled an alphabet soup of molecular connectors that lead to formation of B-cell germinal centers and the production of high-affinity antibodies.

They reported in the May 2, 2016, issue of the journal Nature Immunology that the kinase TBK1 associated with ICOS via a conserved motif, IProx, which shared homology with the tumor-necrosis-factor receptor (TNFR)-associated factors TRAF2 and TRAF3. Disruption of this motif abolished the association of TBK1 with ICOS, TRAF2, and TRAF3, which identified a TBK1-binding consensus. Alteration of this motif in ICOS or depletion of TBK1 in T-cells severely impaired the differentiation of germinal center TFH cells and the development of germinal centers, interfered with B-cell differentiation, and disrupted the development of antibody responses.

“TFH cells have recently been recognized as important players in the immune system, and we now know they are essential for almost all antibody responses,” said co-senior author Dr. Shane Crotty, professor in the vaccine discovery division at the La Jolla Institute for Allergy and Immunology. “TFH cells control the whole process of generating high affinity antibodies, and ICOS is a receptor molecule strongly required for TFH cells to work. Understand ICOS better, and you can make more TFH when needed, and block it when not needed.”

Related Links:
La Jolla Institute for Allergy and Immunology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.