We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words

By LabMedica International staff writers
Posted on 30 Jul 2014
Print article
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).
New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing the foundation of how to form words long before they actually begin to speak and this may affect the developmental transition.

Infants notice the difference between sounds of all languages until about eight months of age when their brains begin to concentrate only on the sounds they hear around them. It is not known how this transition occurs, but social interactions and caregivers’ use of embellished “parentese” manner of speech appear to help.

The study’s findings were published July 14, 2014, in the Proceedings of the National Academy of Sciences of the United States of America. “Most babies babble by seven months, but don’t utter their first words until after their first birthdays,” said lead author Dr. Patricia Kuhl, who is the co-director of the University of Washington’s (UW; Seattle, USA) Institute for Learning and Brain Sciences. “Finding activation in motor areas of the brain when infants are simply listening is significant, because it means the baby brain is engaged in trying to talk back right from the start and suggests that seven-month-olds’ brains are already trying to figure out how to make the right movements that will produce words.”

Dr. Kuhl and her research colleagues think this practice at motor planning contributes to the transition when babies become more sensitive to their native language. These findings stress the importance of talking to kids during social interactions even if they are not talking back yet. “Hearing us talk exercises the action areas of infants’ brains, going beyond what we thought happens when we talk to them,” Dr. Kuhl said. “Infants’ brains are preparing them to act on the world by practicing how to speak before they actually say a word.”

In the research, infants sat in a brain scanner that measures brain activation through a noninvasive technique called magnetoencephalography (MEG). The brain scanner resembles an egg-shaped old-fashioned hair dryer and is completely safe for infants. The Institute for Learning and Brain Sciences was the first in the world to use such a tool to study babies while they engaged in a task.

Each of the infants, 57 7- and 11- or 12-month-olds, listened to a series of native and foreign language syllables such as “da” and “ta” as researchers recorded brain responses. They listened to sounds in English and in Spanish. The researchers examined brain activity in an auditory area of the brain called the superior temporal gyrus, as well as in Broca’s area and the cerebellum, cortical regions responsible for planning the motor movements required for producing speech.

This pattern of brain activation occurred for sounds in the seven-month-olds’ native language (English) as well as in a non-native language (Spanish), showing that at this early age infants are responding to all speech sounds, whether or not they have heard the sounds before.

In the older infants, brain activation was different. By 11-12 months, babies’ brains increase motor activation to the non-native speech sounds comparative to their native speech, which the researchers interpret as showing that it takes more effort for the baby brain to forecast which movements create non-native speech. This reflects an effect of experience between 7 and 11 months, and suggests that activation in motor brain areas is contributing to the transition in early speech perception.

The study has social implications, suggesting that the slow and exaggerated-style of parentese speech-- “Hiiiii! How are youuuuu?”--may actually prompt infants to try to synthesize utterances themselves and imitate what they heard, uttering something like “Ahhh bah bah baaah.”

“Parentese is very exaggerated, and when infants hear it, their brains may find it easier to model the motor movements necessary to speak,” Dr. Kuhl said.

Related Links:

University of Washington


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.